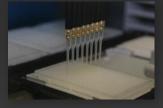

Technology <u>Development Studio</u> (TDS) MPI-CBG, Dresden, Germany

Marc Bickle HT-TDS, MPI-CBG

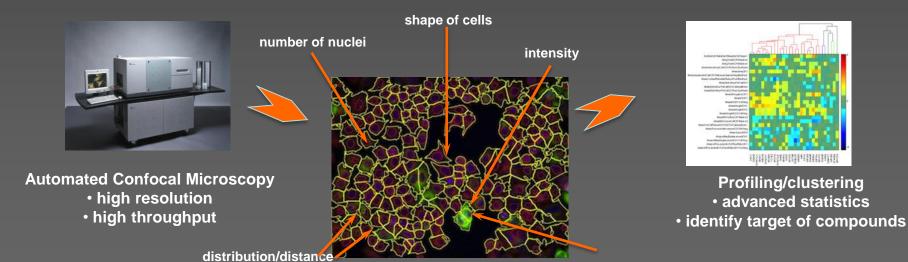
TDS: Core Screening Facility

- Core Screening facility of the MP recept specialized in high content imaging (es
 2003)
- Recharge model, cost neutral (no budget allocated)
- Accept internal and external clients (academic and industrial)
- Currently 9 employees
- Develop custom cell based assays
- Chemical and RNAi screening

Offer courses in HCS, image analysis and statistics



The High Throughput Technology Development Studio (HT-TDS)



Mission: provide cell-based screening services

Automated microscopy and automated image analysis

- High spatio-temporal resolution on a cell-by-cell basis (Often high magnification lenses)
- Quantitative measurement of many cellular parameters (intensity, sub cellular localization) allow finely resolved phenotypic classification
- System biology readouts of chemogenomic screens (genome-wide RNAi screens + chemical scr
- Clustering of RNAi and chemical phenotypes for mode-of-action identification (170.000 cpds, GV

Automated Image Analysis
• multiple parameters
• high definition of phenotypes

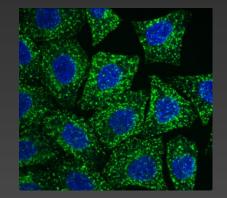
sub cellular localization

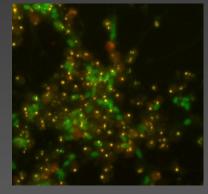
Service Types

The TDS offers two types of services:

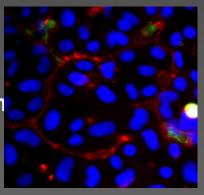
- 1. DYO: we support users to use liquid handling platforms and automated microscopes -> recharge depreciation and support time only
- Full service: users transfer their assay into the laboratory (headache), miniaturize the assay, develop a image analysis and statistic pipeline -> recharge depreciation, support/work time and consumables

Problem: recharging only consumables amounts to subsidizing a service with state funds. This service is offered by companies and thus subsidizing facilities is illegal.

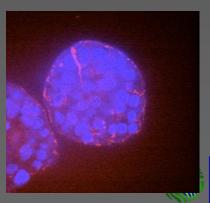




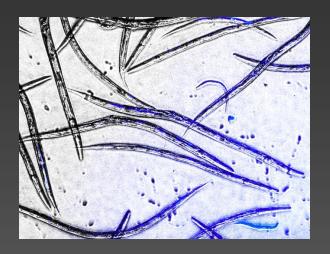
Mammalian Cell Assays

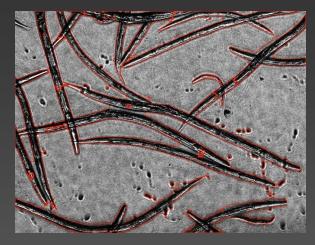

Simple systems (HeLa, U2OS etc)

Complex systems (Neurons, tube formation etc)

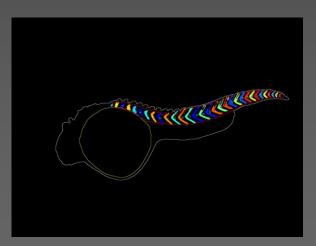

Primary cells (macrophages, hepatocytes, neutroph

3D cell systems (hepatocytes, beta islet cells etc)

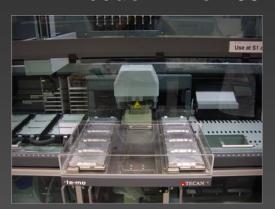




Model Organisms


C. elegans Planarians

Zebra fish



Liquid handling

2 Freedom Evo 200

- Liquid handling station
- 96/384 DiTis/fixed needles
- 8 independent needles
- Connected incubators

Biotek 406 EL

Biomek FX

- Plate washer/drop dispenser Liquid handling station
- 96/384 well format

- 384/96 pipetting head DiTis
- · 8 independent needles
- Connected incubator

Powerwasher 384

- 96/384 well format

Dropdispensers

- Automated plate washer
 Automated drop dispensing 2.5nl drop dispenser
 - 96/384 well format

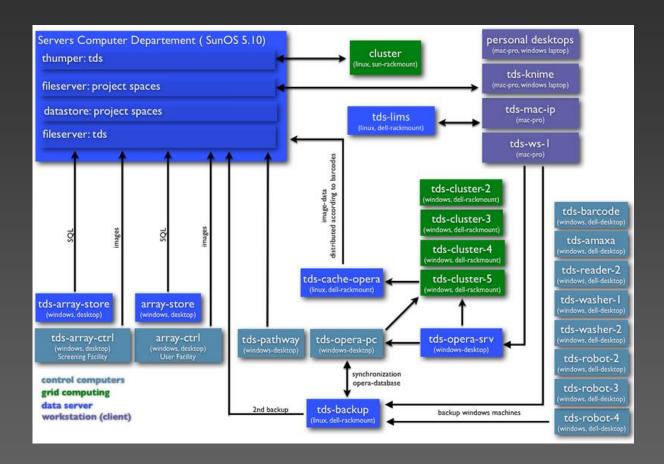
Echo

• 96/384/1536 well format

Imaging Equipment

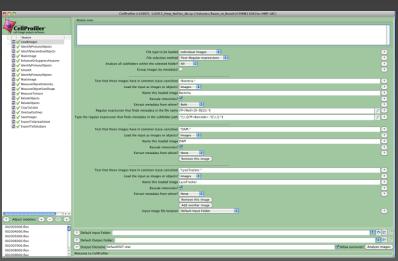
Opera

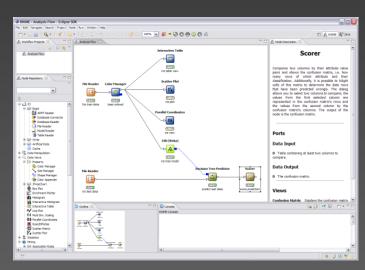
Operetta


BDPathway 855

IT Infrastructure

In house cluster of 128 CPU and recently a 480 CPU/4028 GPU cluster





Software Solutions in the TDS

- Because of budget limitations, commercial software solutions cannot be acquired (Definiens, Matlab, Pipeline Pilot etc) → use Open Source software
- Image processing software of the microscopes are not flexible and fast enough for large complicated datsets

HCS Tools

- KNIME did not have any screening-specific tools implemented
 - → We created a set of KNIME nodes for analyzing screenin data
 - 1. Instrument output readers
 - 2. Well annotation tools, barcode tools
 - 3. Typical QC tools: Z' factor, SSMD, CV
 - 4. Typical normalization tools: Z score, Percent of Control, Normalized Percent Inhibition, B score
 - 5. Typical visualization tools: heatmap

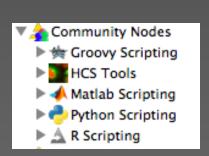
- ▼ A Community Nodes

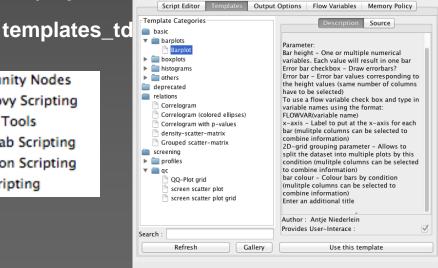
 ► ③ COK

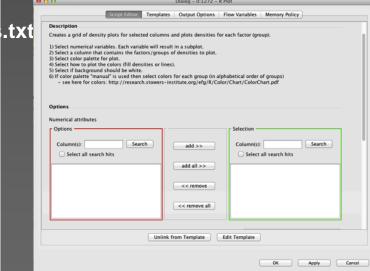
 ► A Bri Wood Cheminformatics

 ► ಈ Growy Stripting
 - F HCS Tools
 - ▼ <u>A</u> Data Manipulation
 - F ∆ Column
 - P. A. Row

 - 平点的
 - A Drodston Reader
 - 196 Example Data
 - △ Generic XML Reader
 - △ GeniusPro Reader
 - A MSD Sector/mager Reader
 - A MortionTracking Reader
 - <u>∆</u> Opera Reader
 - ∆ Operetta Reader
 - Y A Normalization
 - △ Normalize Plates (8-Score):
 - A. Normalipe Plates (NP).
 - △ Normalize Plates (POC)
 - A Normalize Plates (2-5core)
 - <u>∆</u> Vector Length Normalization
 - ∀ <u>∆</u> Pre-Processing.
 - △ Group Mutual Information
 - <u>A</u> Outlier Removal.
 - A Parameter Mutual Information
 - ▼ <u>∆</u> Quality Control
 - ALCV
 - A. Correlation
 - A. Multivariate 2-Primes
 - A. 55MD
 - A SIMO (PC x NC):
 - A. Z. Primers
 - ∆ 2-Primes (PC x NC)
 - Y A Screen Mining.
 - @ Dose Response
 - A. Enrichment Analyzer
 - T. A. Williams
 - Expand Barcode
 - △ Expand Well Position
 - A. John Layouti
 - A. Load Layout.
 - A. Plate Row Converter

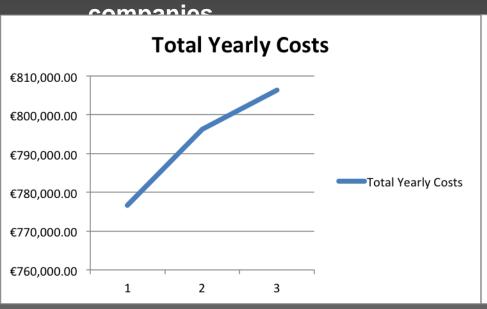


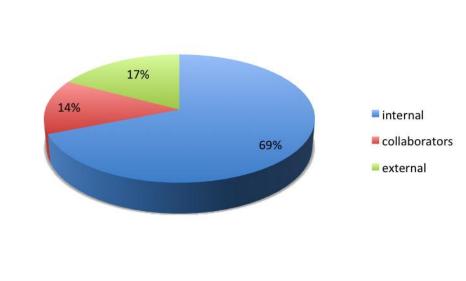



Scripting Integration

- Some methods were not implemented in KNIME nodes
 - → We integrated R, Python, Groovy, Matlab (requires licensed server) scripting languages with RGG:
 - Hides script behind a GUI
 - Choose from a set of templates for methods or plots
 - Parametrization with buttons or drop boxes

(http://idisk-srv1.mpi-cbg.de/knime/scripting-





Budget

- The yearly running costs of the TDS are in the order of 800.000 EUR with an upward trend
- 70% of projects are internal, 30% are external (but can vary to 50/50)
- Sources of funding: grants, service for fee, contracts with

Liver slice

